Fixed point theory and semidefinite programming for computable performance analysis of block-sparsity recovery

نویسندگان

  • Gongguo Tang
  • Arye Nehorai
چکیده

In this paper, we employ fixed point theory and semidefinite programming to compute the performance bounds on convex block-sparsity recovery algorithms. As a prerequisite for optimal sensing matrix design, a computable performance bound would open doors for wide applications in sensor arrays, radar, DNA microarrays, and many other areas where block-sparsity arises naturally. We define a family of goodness measures for arbitrary sensing matrices as the optimal values of certain optimization problems. The reconstruction errors of convex recovery algorithms are bounded in terms of these goodness measures. We demonstrate that as long as the number of measurements is relatively large, these goodness measures are bounded away from zero for a large class of random sensing matrices, a result parallel to the probabilistic analysis of the block restricted isometry property. As the primary contribution of this work, we associate the goodness measures with the fixed points of functions defined by a series of semidefinite programs. This relation with fixed point theory yields efficient algorithms with global convergence guarantees to compute the goodness measures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Recurrent Neural Network Model for Solving Linear Semidefinite Programming

In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

Verifiable and computable performance analysis of sparsity recovery

In this paper, we develop verifiable and computable performance analysis of sparsity recovery. We define a family of goodness measures for arbitrary sensing matrices as a set of optimization problems, and design algorithms with a theoretical global convergence guarantee to compute these goodness measures. The proposed algorithms solve a series of second-order cone programs, or linear programs. ...

متن کامل

Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework

A critical disadvantage of primal-dual interior-point methods compared to dual interior-point methods for large scale semidefinite programs (SDPs) has been that the primal positive semidefinite matrix variable becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidefinite matrix completion, this article proposes a general met...

متن کامل

MAT 585: Exact Recovery of the Semidefinite Relaxation for Stochastic Block Model

Today we consider a semidefinite programming relaxation algorithm for SBM and derive conditions for exact recovery. The main ingredient for the proof will be duality theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1110.1078  شماره 

صفحات  -

تاریخ انتشار 2011