Fixed point theory and semidefinite programming for computable performance analysis of block-sparsity recovery
نویسندگان
چکیده
In this paper, we employ fixed point theory and semidefinite programming to compute the performance bounds on convex block-sparsity recovery algorithms. As a prerequisite for optimal sensing matrix design, a computable performance bound would open doors for wide applications in sensor arrays, radar, DNA microarrays, and many other areas where block-sparsity arises naturally. We define a family of goodness measures for arbitrary sensing matrices as the optimal values of certain optimization problems. The reconstruction errors of convex recovery algorithms are bounded in terms of these goodness measures. We demonstrate that as long as the number of measurements is relatively large, these goodness measures are bounded away from zero for a large class of random sensing matrices, a result parallel to the probabilistic analysis of the block restricted isometry property. As the primary contribution of this work, we associate the goodness measures with the fixed points of functions defined by a series of semidefinite programs. This relation with fixed point theory yields efficient algorithms with global convergence guarantees to compute the goodness measures.
منابع مشابه
A Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملA path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملVerifiable and computable performance analysis of sparsity recovery
In this paper, we develop verifiable and computable performance analysis of sparsity recovery. We define a family of goodness measures for arbitrary sensing matrices as a set of optimization problems, and design algorithms with a theoretical global convergence guarantee to compute these goodness measures. The proposed algorithms solve a series of second-order cone programs, or linear programs. ...
متن کاملExploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework
A critical disadvantage of primal-dual interior-point methods compared to dual interior-point methods for large scale semidefinite programs (SDPs) has been that the primal positive semidefinite matrix variable becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidefinite matrix completion, this article proposes a general met...
متن کاملMAT 585: Exact Recovery of the Semidefinite Relaxation for Stochastic Block Model
Today we consider a semidefinite programming relaxation algorithm for SBM and derive conditions for exact recovery. The main ingredient for the proof will be duality theory.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1110.1078 شماره
صفحات -
تاریخ انتشار 2011